import time from stl import * import numpy as np from pycuda import autoinit from pycuda.compiler import SourceModule import pycuda.driver as cuda from pycuda import gpuarray from string import Template def array2vector(arr, dtype=gpuarray.vec.float3): if len(arr.shape) != 2 or arr.shape[-1] != 3: raise Exception('shape mismatch') x = np.empty(arr.shape[0], dtype=dtype) x['x'] = arr[:,0] x['y'] = arr[:,1] x['z'] = arr[:,2] return x print 'device %s' % autoinit.device.name() source = open('src/intersect.cu').read() mod = SourceModule(source, options=['-I /home/tlatorre/projects/chroma/src'], no_extern_c=True, arch='sm_13') rotate = mod.get_function('rotate') translate = mod.get_function('translate') intersect_mesh = mod.get_function('intersect_mesh') import pygame size = width, height = 800, 600 screen = pygame.display.set_mode(size, (pygame.NOFRAME | pygame.DOUBLEBUF)) film_size = (0.035, 0.024) focal_length = 0.05 grid = [] for x in np.linspace(-film_size[0]/2, film_size[0]/2, width): for z in np.linspace(-film_size[1]/2, film_size[1]/2, height): grid.append((x,0,z)) grid = np.array(grid) grid += (0,focal_length,0) grid += (0,200,30) x = array2vector(grid) x_gpu = cuda.to_device(x) p = (0,200,30)-grid for i in range(p.shape[0]): p[i] /= np.linalg.norm(p[i]) p = array2vector(p) p_gpu = cuda.to_device(p) from zcurve import * #mesh = read_stl('models/tie_interceptor6.stl') #mesh = read_stl('models/sphere.stl') #mesh = read_stl('models/IV.stl') #from lbne import build_lbne #mesh = build_lbne() mesh = read_stl('models/lbne_sphere_only.stl') mesh = mesh.reshape(mesh.shape[0]//3,3,3) mesh = morton_order(mesh) mesh = mesh.reshape(mesh.shape[0]*3, 3) mesh3 = array2vector(mesh) from build import Graph #rotate(np.int32(mesh3.size), cuda.InOut(mesh3), np.float32(-np.pi/2), gpuarray.vec.make_float3(1,0,0), block=(256,1,1), grid=(mesh3.size//256+1,1)) #translate(np.int32(mesh3.size), cuda.InOut(mesh3), gpuarray.vec.make_float3(0,30,0), block=(256,1,1), grid=(mesh3.size//256+1,1)) graph = Graph(mesh3) lower = array2vector(graph.lower, dtype=gpuarray.vec.float4) upper = array2vector(graph.upper, dtype=gpuarray.vec.float4) start = graph.start.astype(np.uint32) count = graph.count.astype(np.uint32) stack = np.zeros(lower.size, dtype=np.int32) lower_gpu = cuda.to_device(lower) upper_gpu = cuda.to_device(upper) lower_tex = mod.get_texref('lower_bound_arr') upper_tex = mod.get_texref('upper_bound_arr') lower_tex.set_address(lower_gpu, lower.nbytes) upper_tex.set_address(upper_gpu, upper.nbytes) lower_tex.set_format(cuda.array_format.FLOAT, 4) upper_tex.set_format(cuda.array_format.FLOAT, 4) start_gpu = cuda.to_device(start) count_gpu = cuda.to_device(count) stack_gpu = cuda.mem_alloc(stack.nbytes) cuda.memcpy_htod(stack_gpu, stack) child_map_tex = mod.get_texref('child_map_arr') child_len_tex = mod.get_texref('child_len_arr') child_map_tex.set_address(start_gpu, start.nbytes) child_len_tex.set_address(count_gpu, count.nbytes) child_map_tex.set_format(cuda.array_format.UNSIGNED_INT32, 1) child_len_tex.set_format(cuda.array_format.UNSIGNED_INT32, 1) mesh = np.empty(mesh3.size, dtype=gpuarray.vec.float4) mesh['x'] = mesh3['x'] mesh['y'] = mesh3['y'] mesh['z'] = mesh3['z'] mesh_gpu = cuda.to_device(mesh) mesh_tex = mod.get_texref('mesh') mesh_tex.set_address(mesh_gpu, mesh.nbytes) mesh_tex.set_format(cuda.array_format.FLOAT, 4) pixel = np.empty(size, dtype=np.int32).flatten() pixel_gpu = cuda.mem_alloc(pixel.nbytes) cuda.memcpy_htod(pixel_gpu, pixel) speed = [] elapsed = [] t0total = time.time() block_size = 64 for i in range(1000): rotate(np.int32(x.size), x_gpu, np.float32(np.pi/100), gpuarray.vec.make_float3(0,0,1), block=(block_size,1,1), grid=(width*height//block_size+1,1)) rotate(np.int32(p.size), p_gpu, np.float32(np.pi/100), gpuarray.vec.make_float3(0,0,1), block=(block_size,1,1), grid=(width*height//block_size+1,1)) translate(np.int32(x.size), x_gpu, gpuarray.vec.make_float3(-np.sin(i*np.pi/100),-np.cos(i*np.pi/100),0), block=(block_size,1,1), grid=(width*height//block_size+1,1)) t0 = time.time() intersect_mesh(np.int32(x.size), x_gpu, p_gpu, pixel_gpu, np.int32(graph.first_leaf), block=(block_size,1,1), grid=(width*height//block_size+1,1), texrefs=[mesh_tex, upper_tex, lower_tex, child_map_tex, child_len_tex]) cuda.Context.synchronize() elapsed.append(time.time() - t0) print '%i triangles, %i photons, %f sec; (%f photons/sec)' % \ (mesh.size//3, pixel.size, elapsed[-1], pixel.size/elapsed[-1]) speed.append(pixel.size/elapsed[-1]) cuda.memcpy_dtoh(pixel, pixel_gpu) pygame.surfarray.blit_array(screen, pixel.reshape(size)) pygame.display.flip() print 'average time = %f sec' % np.mean(elapsed) print 'average speed = %f photons/sec' % np.mean(speed) print 'total time = %f sec' % (time.time() - t0total) raw_input('press enter to exit')