import numpy as np from transform import rotate def uniform_sphere(size=None, dtype=np.double): """ Generate random points isotropically distributed across the unit sphere. Args: - size: int, *optional* Number of points to generate. If no size is specified, a single point is returned. Source: Weisstein, Eric W. "Sphere Point Picking." Mathworld. """ theta, u = np.random.uniform(0.0, 2*np.pi, size), \ np.random.uniform(-1.0, 1.0, size) c = np.sqrt(1-u**2) if size is None: return np.array([c*np.cos(theta), c*np.sin(theta), u]) points = np.empty((size, 3), dtype) points[:,0] = c*np.cos(theta) points[:,1] = c*np.sin(theta) points[:,2] = u return points def flashlight(phi=np.pi/4, direction=(0,0,1), size=None, dtype=np.double): theta, u = np.random.uniform(0.0, 2*np.pi, size), \ np.random.uniform(np.cos(phi), 1, size) c = np.sqrt(1-u**2) if np.equal(direction, (0,0,1)).all(): rotation_axis = (0,0,1) rotation_angle = 0.0 else: rotation_axis = np.cross((0,0,1), direction) rotation_angle = \ -np.arccos(np.dot(direction, (0,0,1))/np.linalg.norm(direction)) if size is None: return rotate(np.array([c*np.cos(theta), c*np.sin(theta), u]), rotation_angle, rotation_axis) points = np.empty((size, 3), dtype) points[:,0] = c*np.cos(theta) points[:,1] = c*np.sin(theta) points[:,2] = u return rotate(points, rotation_angle, rotation_axis)