import numpy as np from histogram import HistogramDD from uncertainties import ufloat, umath from itertools import izip, compress class Likelihood(object): "Class to evaluate likelihoods for detector events." def __init__(self, sim, event=None): """ Args: - sim: chroma.sim.Simulation The simulation object used to simulate events and build pdfs. - event: chroma.event.Event, *optional* The detector event being reconstructed. If None, you must call set_event() before eval(). """ self.sim = sim if event is not None: self.set_event(event) self.pdfs = dict(zip(sim.detector.pmtids,[HistogramDD((100,10), range=[(0.0,1000.0),(-0.5,9.5)])]*len(sim.detector.pmtids))) def set_event(self, event): "Set the detector event being reconstructed." self.event = event def eval(self, vertex_generator, nevals): """ Return the negative log likelihood that the detector event set in the constructor or by set_event() was the result of a particle generated by `vertex_generator`. """ for pdf in self.pdfs.values(): pdf.reset() for ev in self.sim.simulate(nevals, vertex_generator): for i, t, q in compress(izip(range(ev.hits.hit.size),ev.hits.t,ev.hits.q),ev.hits.hit): self.pdfs[i].fill((ev.hits.t[i],ev.hits.q[i])) for pdf in self.pdfs.values(): if pdf.nentries > 0: pdf.normalize() log_likelihood = ufloat((0,0)) for i, t, q in compress(izip(range(self.event.channels.hit.size),self.event.channels.t,self.event.channels.q),self.event.channels.hit): probability = self.pdfs[i].ueval((t,q)).item() if probability.nominal_value == 0.0: if self.pdfs[i].nentries > 0: probability = ufloat([0.5/self.pdfs[i].nentries]*2) else: probability = ufloat([1.0/len(self.pdfs[i].bincenters)]*2) log_likelihood += umath.log(probability) return -log_likelihood if __name__ == '__main__': from chroma import detectors from chroma.sim import Simulation from chroma.optics import water from chroma.generator import constant_particle_gun detector = detectors.find('minilbne') sim = Simulation(detector, water) event = sim.simulate(1, constant_particle_gun('e-',(0,0,0),(1,0,0),100.0)).next() likelihood = Likelihood(sim, event) for x in np.linspace(-1.0, 1.0, 20): print 'x = %f, %s' % (x, likelihood.eval(constant_particle_gun('e-',(x,0,0),(1,0,0),100.0),100))