From f6ec6d8fff619bdbc569e88cc48db20d74c2020e Mon Sep 17 00:00:00 2001 From: Stan Seibert Date: Fri, 19 Aug 2011 12:10:55 -0400 Subject: Rename test scripts so nose will find them. --- tests/propagation.py | 53 -------------------------------------------- tests/rayleigh.py | 56 ----------------------------------------------- tests/test_propagation.py | 53 ++++++++++++++++++++++++++++++++++++++++++++ tests/test_rayleigh.py | 56 +++++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 109 insertions(+), 109 deletions(-) delete mode 100644 tests/propagation.py delete mode 100644 tests/rayleigh.py create mode 100644 tests/test_propagation.py create mode 100644 tests/test_rayleigh.py (limited to 'tests') diff --git a/tests/propagation.py b/tests/propagation.py deleted file mode 100644 index 331242b..0000000 --- a/tests/propagation.py +++ /dev/null @@ -1,53 +0,0 @@ -import unittest -import numpy as np - -from chroma.geometry import Solid, Geometry -from chroma.make import box -from chroma.sim import Simulation -from chroma.optics import vacuum -from chroma.event import Photons - -class TestPropagation(unittest.TestCase): - def testAbort(self): - '''Photons that hit a triangle at normal incidence should not abort. - - Photons that hit a triangle at exactly normal incidence can sometimes produce a dot product - that is outside the range allowed by acos(). Trigger these with axis aligned photons in a box - ''' - - # Setup geometry - cube = Geometry() - cube.add_solid(Solid(box(100,100,100), vacuum, vacuum)) - cube.pmtids = [0] - sim = Simulation(cube, vacuum, bvh_bits=4, geant4_processes=0, - use_cache=False) - - # Create initial photons - nphotons = 10000 - positions = np.tile([0,0,0], (nphotons,1)).astype(np.float32) - directions = np.tile([0,0,1], (nphotons,1)).astype(np.float32) - polarizations = np.zeros_like(positions) - phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32) - polarizations[:,0] = np.cos(phi) - polarizations[:,1] = np.sin(phi) - times = np.zeros(nphotons, dtype=np.float32) - wavelengths = np.empty(nphotons, np.float32) - wavelengths.fill(400.0) - - photons = Photons(positions=positions, directions=directions, polarizations=polarizations, - times=times, wavelengths=wavelengths) - - # First make one step to check for strangeness - photon_stop = sim.propagate_photons(photons, max_steps=1) - self.assertFalse(np.isnan(photon_stop.positions).any()) - self.assertFalse(np.isnan(photon_stop.directions).any()) - self.assertFalse(np.isnan(photon_stop.polarizations).any()) - self.assertFalse(np.isnan(photon_stop.times).any()) - self.assertFalse(np.isnan(photon_stop.wavelengths).any()) - - # Now let it run the usual ten steps - photon_stop = sim.propagate_photons(photons, max_steps=10) - aborted = (photon_stop.histories & (1 << 31)) > 0 - print 'aborted photons: %1.1f' % (float(np.count_nonzero(aborted)) / nphotons) - self.assertFalse(aborted.any()) - diff --git a/tests/rayleigh.py b/tests/rayleigh.py deleted file mode 100644 index 4394ada..0000000 --- a/tests/rayleigh.py +++ /dev/null @@ -1,56 +0,0 @@ -import unittest -import numpy as np - -from chroma.geometry import Solid, Geometry -from chroma.make import box -from chroma.sim import Simulation -from chroma.optics import water_wcsim -from chroma.event import Photons -import histogram -from histogram.root import rootify -import ROOT -ROOT.gROOT.SetBatch(1) - -class TestRayleigh(unittest.TestCase): - def setUp(self): - self.cube = Geometry() - self.cube.add_solid(Solid(box(100,100,100), water_wcsim, water_wcsim)) - self.cube.pmtids = [0] - self.sim = Simulation(self.cube, water_wcsim, bvh_bits=4, geant4_processes=0, - use_cache=False) - nphotons = 100000 - positions = np.tile([0,0,0], (nphotons,1)).astype(np.float32) - directions = np.tile([0,0,1], (nphotons,1)).astype(np.float32) - polarizations = np.zeros_like(positions) - phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32) - polarizations[:,0] = np.cos(phi) - polarizations[:,1] = np.sin(phi) - times = np.zeros(nphotons, dtype=np.float32) - wavelengths = np.empty(nphotons, np.float32) - wavelengths.fill(400.0) - - self.photons = Photons(positions=positions, directions=directions, polarizations=polarizations, - times=times, wavelengths=wavelengths) - - def testAngularDistributionPolarized(self): - # Fully polarized photons - self.photons.polarizations[:] = [1.0, 0.0, 0.0] - - photon_stop = self.sim.propagate_photons(self.photons, max_steps=1) - aborted = (photon_stop.histories & (1 << 31)) > 0 - self.assertFalse(aborted.any()) - - # Compute the dot product between initial and final directions - rayleigh_scatters = (photon_stop.histories & (1 << 4)) > 0 - cos_scatter = (self.photons.directions[rayleigh_scatters] * photon_stop.directions[rayleigh_scatters]).sum(axis=1) - theta_scatter = np.arccos(cos_scatter) - h = histogram.Histogram(bins=100, range=(0, np.pi)) - h.fill(theta_scatter) - h = rootify(h) - - # The functional form for polarized light should be (1 + \cos^2 \theta)\sin \theta - # according to GEANT4 physics reference manual - f = ROOT.TF1("pol_func", "[0]*(1+cos(x)**2)*sin(x)", 0, np.pi) - h.Fit(f) - self.assertGreater(f.GetProb(), 1e-3) - diff --git a/tests/test_propagation.py b/tests/test_propagation.py new file mode 100644 index 0000000..331242b --- /dev/null +++ b/tests/test_propagation.py @@ -0,0 +1,53 @@ +import unittest +import numpy as np + +from chroma.geometry import Solid, Geometry +from chroma.make import box +from chroma.sim import Simulation +from chroma.optics import vacuum +from chroma.event import Photons + +class TestPropagation(unittest.TestCase): + def testAbort(self): + '''Photons that hit a triangle at normal incidence should not abort. + + Photons that hit a triangle at exactly normal incidence can sometimes produce a dot product + that is outside the range allowed by acos(). Trigger these with axis aligned photons in a box + ''' + + # Setup geometry + cube = Geometry() + cube.add_solid(Solid(box(100,100,100), vacuum, vacuum)) + cube.pmtids = [0] + sim = Simulation(cube, vacuum, bvh_bits=4, geant4_processes=0, + use_cache=False) + + # Create initial photons + nphotons = 10000 + positions = np.tile([0,0,0], (nphotons,1)).astype(np.float32) + directions = np.tile([0,0,1], (nphotons,1)).astype(np.float32) + polarizations = np.zeros_like(positions) + phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32) + polarizations[:,0] = np.cos(phi) + polarizations[:,1] = np.sin(phi) + times = np.zeros(nphotons, dtype=np.float32) + wavelengths = np.empty(nphotons, np.float32) + wavelengths.fill(400.0) + + photons = Photons(positions=positions, directions=directions, polarizations=polarizations, + times=times, wavelengths=wavelengths) + + # First make one step to check for strangeness + photon_stop = sim.propagate_photons(photons, max_steps=1) + self.assertFalse(np.isnan(photon_stop.positions).any()) + self.assertFalse(np.isnan(photon_stop.directions).any()) + self.assertFalse(np.isnan(photon_stop.polarizations).any()) + self.assertFalse(np.isnan(photon_stop.times).any()) + self.assertFalse(np.isnan(photon_stop.wavelengths).any()) + + # Now let it run the usual ten steps + photon_stop = sim.propagate_photons(photons, max_steps=10) + aborted = (photon_stop.histories & (1 << 31)) > 0 + print 'aborted photons: %1.1f' % (float(np.count_nonzero(aborted)) / nphotons) + self.assertFalse(aborted.any()) + diff --git a/tests/test_rayleigh.py b/tests/test_rayleigh.py new file mode 100644 index 0000000..4394ada --- /dev/null +++ b/tests/test_rayleigh.py @@ -0,0 +1,56 @@ +import unittest +import numpy as np + +from chroma.geometry import Solid, Geometry +from chroma.make import box +from chroma.sim import Simulation +from chroma.optics import water_wcsim +from chroma.event import Photons +import histogram +from histogram.root import rootify +import ROOT +ROOT.gROOT.SetBatch(1) + +class TestRayleigh(unittest.TestCase): + def setUp(self): + self.cube = Geometry() + self.cube.add_solid(Solid(box(100,100,100), water_wcsim, water_wcsim)) + self.cube.pmtids = [0] + self.sim = Simulation(self.cube, water_wcsim, bvh_bits=4, geant4_processes=0, + use_cache=False) + nphotons = 100000 + positions = np.tile([0,0,0], (nphotons,1)).astype(np.float32) + directions = np.tile([0,0,1], (nphotons,1)).astype(np.float32) + polarizations = np.zeros_like(positions) + phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32) + polarizations[:,0] = np.cos(phi) + polarizations[:,1] = np.sin(phi) + times = np.zeros(nphotons, dtype=np.float32) + wavelengths = np.empty(nphotons, np.float32) + wavelengths.fill(400.0) + + self.photons = Photons(positions=positions, directions=directions, polarizations=polarizations, + times=times, wavelengths=wavelengths) + + def testAngularDistributionPolarized(self): + # Fully polarized photons + self.photons.polarizations[:] = [1.0, 0.0, 0.0] + + photon_stop = self.sim.propagate_photons(self.photons, max_steps=1) + aborted = (photon_stop.histories & (1 << 31)) > 0 + self.assertFalse(aborted.any()) + + # Compute the dot product between initial and final directions + rayleigh_scatters = (photon_stop.histories & (1 << 4)) > 0 + cos_scatter = (self.photons.directions[rayleigh_scatters] * photon_stop.directions[rayleigh_scatters]).sum(axis=1) + theta_scatter = np.arccos(cos_scatter) + h = histogram.Histogram(bins=100, range=(0, np.pi)) + h.fill(theta_scatter) + h = rootify(h) + + # The functional form for polarized light should be (1 + \cos^2 \theta)\sin \theta + # according to GEANT4 physics reference manual + f = ROOT.TF1("pol_func", "[0]*(1+cos(x)**2)*sin(x)", 0, np.pi) + h.Fit(f) + self.assertGreater(f.GetProb(), 1e-3) + -- cgit