From 707ca1b366f11032682cc864ca2848905e6b485c Mon Sep 17 00:00:00 2001 From: Anthony LaTorre Date: Fri, 2 Sep 2011 12:12:38 -0400 Subject: update event structure. break gpu.GPU class into separate smaller independent classes. --- tests/test_rayleigh.py | 36 ++++++++++++++++++------------------ 1 file changed, 18 insertions(+), 18 deletions(-) (limited to 'tests/test_rayleigh.py') diff --git a/tests/test_rayleigh.py b/tests/test_rayleigh.py index 4394ada..7e5fc92 100644 --- a/tests/test_rayleigh.py +++ b/tests/test_rayleigh.py @@ -13,43 +13,43 @@ ROOT.gROOT.SetBatch(1) class TestRayleigh(unittest.TestCase): def setUp(self): - self.cube = Geometry() + self.cube = Geometry(water_wcsim) self.cube.add_solid(Solid(box(100,100,100), water_wcsim, water_wcsim)) self.cube.pmtids = [0] - self.sim = Simulation(self.cube, water_wcsim, bvh_bits=4, geant4_processes=0, + self.sim = Simulation(self.cube, bvh_bits=4, geant4_processes=0, use_cache=False) nphotons = 100000 - positions = np.tile([0,0,0], (nphotons,1)).astype(np.float32) - directions = np.tile([0,0,1], (nphotons,1)).astype(np.float32) - polarizations = np.zeros_like(positions) + pos = np.tile([0,0,0], (nphotons,1)).astype(np.float32) + dir = np.tile([0,0,1], (nphotons,1)).astype(np.float32) + pol = np.zeros_like(pos) phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32) - polarizations[:,0] = np.cos(phi) - polarizations[:,1] = np.sin(phi) - times = np.zeros(nphotons, dtype=np.float32) + pol[:,0] = np.cos(phi) + pol[:,1] = np.sin(phi) + t = np.zeros(nphotons, dtype=np.float32) wavelengths = np.empty(nphotons, np.float32) wavelengths.fill(400.0) - self.photons = Photons(positions=positions, directions=directions, polarizations=polarizations, - times=times, wavelengths=wavelengths) + self.photons = Photons(pos=pos, dir=dir, pol=pol, t=t, wavelengths=wavelengths) def testAngularDistributionPolarized(self): # Fully polarized photons - self.photons.polarizations[:] = [1.0, 0.0, 0.0] + self.photons.pol[:] = [1.0, 0.0, 0.0] - photon_stop = self.sim.propagate_photons(self.photons, max_steps=1) - aborted = (photon_stop.histories & (1 << 31)) > 0 + photons_end = self.sim.simulate([self.photons], keep_photons_end=True, max_steps=1).next().photons_end + aborted = (photons_end.flags & (1 << 31)) > 0 self.assertFalse(aborted.any()) - # Compute the dot product between initial and final directions - rayleigh_scatters = (photon_stop.histories & (1 << 4)) > 0 - cos_scatter = (self.photons.directions[rayleigh_scatters] * photon_stop.directions[rayleigh_scatters]).sum(axis=1) + # Compute the dot product between initial and final dir + rayleigh_scatters = (photons_end.flags & (1 << 4)) > 0 + cos_scatter = (self.photons.dir[rayleigh_scatters] * photons_end.dir[rayleigh_scatters]).sum(axis=1) theta_scatter = np.arccos(cos_scatter) h = histogram.Histogram(bins=100, range=(0, np.pi)) h.fill(theta_scatter) h = rootify(h) - # The functional form for polarized light should be (1 + \cos^2 \theta)\sin \theta - # according to GEANT4 physics reference manual + # The functional form for polarized light should be + # (1 + \cos^2 \theta)\sin \theta according to GEANT4 physics + # reference manual. f = ROOT.TF1("pol_func", "[0]*(1+cos(x)**2)*sin(x)", 0, np.pi) h.Fit(f) self.assertGreater(f.GetProb(), 1e-3) -- cgit