summaryrefslogtreecommitdiff
path: root/src/kernel.cu
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernel.cu')
-rw-r--r--src/kernel.cu459
1 files changed, 459 insertions, 0 deletions
diff --git a/src/kernel.cu b/src/kernel.cu
new file mode 100644
index 0000000..2d579be
--- /dev/null
+++ b/src/kernel.cu
@@ -0,0 +1,459 @@
+//-*-c-*-
+#include <math_constants.h>
+#include <curand_kernel.h>
+
+#include "linalg.h"
+#include "matrix.h"
+#include "rotate.h"
+#include "intersect.h"
+#include "materials.h"
+#include "physical_constants.h"
+#include "random.h"
+
+#define STACK_SIZE 500
+
+enum
+{
+ DEBUG = -2,
+ INIT = -1,
+ NO_HIT,
+ BULK_ABSORB,
+ SURFACE_ABSORB
+};
+
+/* flattened triangle mesh */
+__device__ float4 *vertices;
+__device__ uint4 *triangles;
+
+/* lower/upper bounds for the bounding box associated with each node/leaf */
+texture<float4, 1, cudaReadModeElementType> upper_bounds;
+texture<float4, 1, cudaReadModeElementType> lower_bounds;
+
+/* map to child nodes/triangles and the number of child nodes/triangles */
+texture<unsigned int, 1, cudaReadModeElementType> node_map;
+texture<unsigned int, 1, cudaReadModeElementType> node_length;
+
+__device__ float3 make_float3(const float4 &a)
+{
+ return make_float3(a.x, a.y, a.z);
+}
+
+__device__ int convert(int c)
+{
+ if (c & 0x80)
+ return (0xFFFFFF00 | c);
+ else
+ return c;
+}
+
+/* Test the intersection between a ray starting at `origin` traveling in the
+ direction `direction` and the bounding box around node `i`. If the ray
+ intersects the bounding box return true, else return false. */
+__device__ bool intersect_node(const float3 &origin, const float3 &direction, const int &i)
+{
+ float3 lower_bound = make_float3(tex1Dfetch(lower_bounds, i));
+ float3 upper_bound = make_float3(tex1Dfetch(upper_bounds, i));
+
+ return intersect_box(origin, direction, lower_bound, upper_bound);
+}
+
+/* Find the intersection between a ray starting at `origin` traveling in the
+ direction `direction` and the global mesh texture. If the ray intersects
+ the texture return the index of the triangle which the ray intersected,
+ else return -1. */
+__device__ int intersect_mesh(const float3 &origin, const float3& direction, const int start_node, const int first_node, float &min_distance, int last_hit_triangle = -1)
+{
+ int triangle_index = -1;
+
+ float distance;
+
+ if (!intersect_node(origin, direction, start_node))
+ return -1;
+
+ int stack[STACK_SIZE];
+
+ int *head = &stack[0];
+ int *node = &stack[1];
+ int *tail = &stack[STACK_SIZE-1];
+ *node = start_node;
+
+ int i;
+
+ do
+ {
+ int index = tex1Dfetch(node_map, *node);
+ int length = tex1Dfetch(node_length, *node);
+
+ if (*node >= first_node)
+ {
+ for (i=0; i < length; i++)
+ {
+ if (intersect_node(origin, direction, index+i))
+ {
+ //*node++ = index+i;
+ *node = index+i;
+ node++;
+ }
+ }
+
+ if (node == head)
+ break;
+
+ node--;
+ }
+ else // node is a leaf
+ {
+ for (i=0; i < length; i++)
+ {
+ if (last_hit_triangle == index+i)
+ continue;
+
+ uint4 triangle_data = triangles[index+i];
+
+ float3 v0 = make_float3(vertices[triangle_data.x]);
+ float3 v1 = make_float3(vertices[triangle_data.y]);
+ float3 v2 = make_float3(vertices[triangle_data.z]);
+
+ if (intersect_triangle(origin, direction, v0, v1, v2, distance))
+ {
+ if (triangle_index == -1)
+ {
+ triangle_index = index + i;
+ min_distance = distance;
+ continue;
+ }
+
+ if (distance < min_distance)
+ {
+ triangle_index = index + i;
+ min_distance = distance;
+ }
+ }
+ } // triangle loop
+
+ node--;
+
+ } // node is a leaf
+
+ } // while loop
+ while (node != head);
+
+ return triangle_index;
+}
+
+__device__ curandState rng_states[100000];
+
+extern "C"
+{
+
+ __global__ void set_pointer(uint4 *triangle_ptr, float4 *vertex_ptr)
+{
+ triangles = triangle_ptr;
+ vertices = vertex_ptr;
+}
+
+/* Initialize random number states */
+__global__ void init_rng(int nthreads, unsigned long long seed, unsigned long long offset)
+{
+ int id = blockIdx.x*blockDim.x + threadIdx.x;
+
+ if (id >= nthreads)
+ return;
+
+ curand_init(seed, id, offset, rng_states+id);
+}
+
+/* Translate `points` by the vector `v` */
+__global__ void translate(int nthreads, float3 *points, float3 v)
+{
+ int id = blockIdx.x*blockDim.x + threadIdx.x;
+
+ if (id >= nthreads)
+ return;
+
+ points[id] += v;
+}
+
+/* Rotate `points` through an angle `phi` counter-clockwise about the
+ axis `axis` (when looking towards +infinity). */
+__global__ void rotate(int nthreads, float3 *points, float phi, float3 axis)
+{
+ int id = blockIdx.x*blockDim.x + threadIdx.x;
+
+ if (id >= nthreads)
+ return;
+
+ points[id] = rotate(points[id], phi, axis);
+}
+
+/* Trace the rays starting at `positions` traveling in the direction `directions`
+ to their intersection with the global mesh. If the ray intersects the mesh
+ set the pixel associated with the ray to a 32 bit color whose brightness is
+ determined by the cosine of the angle between the ray and the normal of the
+ triangle it intersected, else set the pixel to 0. */
+__global__ void ray_trace(int nthreads, float3 *positions, float3 *directions, int start_node, int first_node, int *pixels)
+{
+ int id = blockIdx.x*blockDim.x + threadIdx.x;
+
+ if (id >= nthreads)
+ return;
+
+ float3 position = positions[id];
+ float3 direction = directions[id];
+ direction /= norm(direction);
+
+ float distance;
+
+ int triangle_index = intersect_mesh(position, direction, start_node, first_node, distance);
+
+ if (triangle_index == -1)
+ {
+ pixels[id] = 0x000000;
+ }
+ else
+ {
+ uint4 triangle_data = triangles[triangle_index];
+
+ float3 v0 = make_float3(vertices[triangle_data.x]);
+ float3 v1 = make_float3(vertices[triangle_data.y]);
+ float3 v2 = make_float3(vertices[triangle_data.z]);
+
+ pixels[id] = get_color(direction, v0, v1, v2, triangle_data.w);
+ }
+
+} // ray_trace
+
+__global__ void propagate(int nthreads, float3 *positions, float3 *directions, float *wavelengths, float3 *polarizations, float *times, int *states, int *last_hit_triangles, int start_node, int first_node, int max_steps)
+{
+ int id = blockIdx.x*blockDim.x + threadIdx.x;
+
+ if (id >= nthreads)
+ return;
+
+ int state = states[id];
+
+ if (state != INIT)
+ return;
+
+ curandState rng = rng_states[id];
+ float3 position = positions[id];
+ float3 direction = directions[id];
+ float3 polarization = polarizations[id];
+ float wavelength = wavelengths[id];
+ float time = times[id];
+ int last_hit_triangle = last_hit_triangles[id];
+
+ int steps = 0;
+ while (steps < max_steps)
+ {
+ steps++;
+
+ direction /= norm(direction);
+ polarization /= norm(polarization);
+
+ float distance;
+
+ last_hit_triangle = intersect_mesh(position, direction, start_node, first_node, distance, last_hit_triangle);
+
+ if (last_hit_triangle == -1)
+ {
+ state = NO_HIT;
+ break;
+ }
+
+ uint4 triangle_data = triangles[last_hit_triangle];
+
+ float3 v0 = make_float3(vertices[triangle_data.x]);
+ float3 v1 = make_float3(vertices[triangle_data.y]);
+ float3 v2 = make_float3(vertices[triangle_data.z]);
+
+ int material_in_index = convert(0xFF & (triangle_data.w >> 24));
+ int material_out_index = convert(0xFF & (triangle_data.w >> 16));
+ int surface_index = convert(0xFF & (triangle_data.w >> 8));
+
+ float3 surface_normal = cross(v1-v0,v2-v1);
+ surface_normal /= norm(surface_normal);
+
+ Material material1, material2;
+ if (dot(surface_normal,-direction) > 0.0f)
+ {
+ // outside to inside
+ material1 = materials[material_out_index];
+ material2 = materials[material_in_index];
+ }
+ else
+ {
+ // inside to outside
+ material1 = materials[material_in_index];
+ material2 = materials[material_out_index];
+ surface_normal = -surface_normal;
+ }
+
+ float refractive_index1 = interp_property(wavelength, material1.refractive_index);
+ float refractive_index2 = interp_property(wavelength, material2.refractive_index);
+
+ float absorption_length = interp_property(wavelength, material1.absorption_length);
+ float scattering_length = interp_property(wavelength, material1.scattering_length);
+
+ float absorption_distance = -absorption_length*logf(curand_uniform(&rng));
+ float scattering_distance = -absorption_length*logf(curand_uniform(&rng));
+
+ if (absorption_distance <= scattering_distance)
+ {
+ if (absorption_distance <= distance)
+ {
+ time += absorption_distance/(SPEED_OF_LIGHT/refractive_index1);
+ position += absorption_distance*direction;
+ state = BULK_ABSORB;
+
+ last_hit_triangle = -1;
+
+ break;
+ } // photon is absorbed in material1
+ }
+ else
+ {
+ if (scattering_distance <= distance)
+ {
+ time += scattering_distance/(SPEED_OF_LIGHT/refractive_index1);
+ position += scattering_distance*direction;
+
+ float theta,y;
+ while (true)
+ {
+ y = curand_uniform(&rng);
+ theta = uniform(&rng, 0, 2*PI);
+
+ if (y < powf(cosf(theta),2))
+ break;
+ }
+
+ float phi = uniform(&rng, 0, 2*PI);
+
+ float3 b = cross(polarization, direction);
+ float3 c = polarization;
+
+ direction = rotate(direction, theta, b);
+ direction = rotate(direction, phi, c);
+ polarization = rotate(polarization, theta, b);
+ polarization = rotate(polarization, phi, c);
+
+ last_hit_triangle = -1;
+
+ continue;
+ } // photon is scattered in material1
+
+ } // if scattering_distance < absorption_distance
+
+ position += distance*direction;
+ time += distance/(SPEED_OF_LIGHT/refractive_index1);
+
+ // p is normal to the plane of incidence
+ float3 p = cross(direction, surface_normal);
+ p /= norm(p);
+
+ float normal_coefficient = dot(polarization, p);
+ float normal_probability = normal_coefficient*normal_coefficient;
+
+ float incident_angle = acosf(dot(surface_normal,-direction));
+
+ if (surface_index != -1)
+ {
+ Surface surface = surfaces[surface_index];
+
+ float absorption = interp_property(wavelength, surface.absorption);
+ float reflection_diffuse = interp_property(wavelength, surface.reflection_diffuse);
+ float reflection_specular = interp_property(wavelength, surface.reflection_specular);
+
+ float sum = absorption + reflection_diffuse + reflection_specular;
+ absorption /= sum;
+ reflection_diffuse /= sum;
+ reflection_specular /= sum;
+
+ float uniform_sample = curand_uniform(&rng);
+
+ if (uniform_sample < absorption)
+ {
+ // absorb
+ state = SURFACE_ABSORB;
+ break;
+ }
+ else if (uniform_sample < absorption + reflection_diffuse)
+ {
+ // diffusely reflect
+ direction = uniform_sphere(&rng);
+
+ if (dot(direction, surface_normal) < 0.0f)
+ direction = -direction;
+
+ // randomize polarization ?
+ polarization = cross(uniform_sphere(&rng), direction);
+ polarization /= norm(polarization);
+
+ continue;
+ }
+ else
+ {
+ // specularly reflect
+
+ direction = rotate(surface_normal, incident_angle, p);
+
+ continue;
+ }
+
+ } // surface
+
+ float refracted_angle = asinf(sinf(incident_angle)*refractive_index1/refractive_index2);
+
+ if (curand_uniform(&rng) < normal_probability)
+ {
+
+ float reflection_coefficient = -sinf(incident_angle-refracted_angle)/sinf(incident_angle+refracted_angle);
+ float reflection_probability = reflection_coefficient*reflection_coefficient;
+
+ if ((curand_uniform(&rng) < reflection_probability) || isnan(refracted_angle))
+ {
+ direction = rotate(surface_normal, incident_angle, p);
+ }
+ else
+ {
+ direction = rotate(surface_normal, PI-refracted_angle, p);
+ }
+
+ polarization = p;
+
+ continue;
+ } // photon polarization normal to plane of incidence
+ else
+ {
+ float reflection_coefficient = tanf(incident_angle-refracted_angle)/tanf(incident_angle+refracted_angle);
+ float reflection_probability = reflection_coefficient*reflection_coefficient;
+
+ if ((curand_uniform(&rng) < reflection_probability) || isnan(refracted_angle))
+ {
+ direction = rotate(surface_normal, incident_angle, p);
+ }
+ else
+ {
+ direction = rotate(surface_normal, PI-refracted_angle, p);
+ }
+
+ polarization = cross(p, direction);
+
+ continue;
+ } // photon polarization parallel to surface
+
+ } // while(nsteps < max_steps)
+
+ states[id] = state;
+ rng_states[id] = rng;
+ positions[id] = position;
+ directions[id] = direction;
+ polarizations[id] = polarization;
+ wavelengths[id] = wavelength;
+ times[id] = time;
+ last_hit_triangles[id] = last_hit_triangle;
+
+} // propagate
+
+} // extern "c"